Главная » Файлы » Рефераты » Рефераты |
Історія розвитку фізики
[ Скачать с сервера (46.5 Kb) ] | 20.08.2017, 23:30 |
ПЛАН 1. Вступ……………………………………………………………………. 1.1 Передумови розвитку науки………………………………………. 1.3 Зародженя і розвиток фізики як науки. 1.3 Роль фізичного знання в житті людини й розвитку суспільства.. 2. Зародження і розвиток фізики як науки……………………………… 3. Відповідь на питання – «Навіщо вивчати фізику?»………………….. 4. Вчені які зробили значний вклад у розвиток фізики…………………. 5. Фізика в Україні………………………………………………………… 1. Вступ Слово «фізика» походить від давньогрецького слова «природа» . Так назвав першу відому нам наукову працю про природні явища давньогрецький учений Арістотель, який жив у 4-му столітті до нашої ери. Книга Арістотеля служила основним «підручником фізики» протягом майже двох тисячоліть. Наступний важливий крок у розвитку фізики зробив великий італійський учений Ґалілео Ґалілей (1564-1642). Його вважають основоположником фізики в її сучасному розумінні — як дослідної (експериментальної) науки. Ґалілей спростував на дослідах деякі важливі положення вчення Арістотеля. Фізика досліджує механічні, теплові, електромагнітні, світлові явища, а також будову речовини. Завданням фізики, як і інших наук, є пошук законів, за допомогою яких можна пояснювати та передбачати широке коло явищ. Фі́зика (від грец. φυσικός природний, φύσις природа) — природнича наука, яка досліджує загальні властивості матерії та явищ у ній, а також виявляє загальні закони, які керують цими явищами; це наука про закономірності Природи в широкому сенсі цього слова. Фізики вивчають поведінку та властивості матерії в широких межах її проявів, від субмікроскопічних елементарних частинок, з яких побудоване все матеріальне (фізика елементарних частинок), до поведінки всього Всесвіту, як єдиної системи (космологія). Деякі з закономірностей, які встановлені фізикою, є загальними для всіх матеріальних систем. До таких можна віднести, наприклад, закон збереження енергії. Такі закономірності називають законами фізики. Фізику вважають фундаментальною наукою, тому що всі інші природничі науки (хімія, геологія, біологія тощо) мають справу з певними різновидами матеріальних систем, які підкоряються законам фізики. Наприклад, властивості хімічних речовин визначаються властивостями молекул та атомів, які їх складають, а ці властивості досліджують в таких галузях фізики, як квантова механіка, термодинаміка і/або електрика (електромагнетизм). Фізика також тісно пов'язана з математикою. Фізичні теорії, як правило, побудовані на основі певного математичного апарату і цей апарат часто набагато складніший в порівнянні з іншими природничими науками. Але відмінність фізики від математики в тому, що фізика принципово зосереджена на описі матеріального світу, тоді як математика має справу з абстрактними ідеями та формулюваннями, які не обов'язково мають якесь реальне відображення. Хоча чіткого поділу не існує. На перетині цих двох наук постала спеціальна дисципліна — математична фізика, яка вибудовує математичні структури фізичних теорій. 1.1 Передумови розвитку науки Розвиток науки був складовою загального процесу інтелектуального розвитку людського розуму і становлення людської цивілізації. Не можна розглядати розвиток науки відокремлено від процесів розвитку мови, писемності, лічби, мистецтва, формування світогляду та виникнення філософії.Накопичення знань відбувається в процесі розвитку цивілізацій; усім відомі досягнення давніх цивілізацій (єгипетської, ме-сопотамської та ін.) у галузях астрономії, математики, медицини.Першою й головною причиною виникнення науки є формування суб’єктно-об’єктних відносин між людиною і природою, між людиною й навколишнім середовищем. Уже в епоху палеоліту людина створює перші знаряддя праці з каменю й кістки — сокиру, ніж, скребло, спис, лук, стріли, починає використовувати вогонь і будує примітивні житла. В епоху мезоліту людина плете сітки, будує човни, займається обробкою дерева. У період неоліту (до ІІІ тис. до н. е.) людина розвиває гончарне ремесло, освоює землеробство, займається виготовленням глиняного посуду, використовує мотику, серп, веретено, глиняні, рублені, пальові будівлі, опановує метали. Тоді ж починає використовувати тварин як тяглову силу,винаходить колісні візки, гончарне колесо, вітрильник, міхи. До початку І тис. до н. е. з’являються знаряддя праці із заліза.Другою причиною формування науки є ускладнення пізнавальної діяльності людини: освоєння різних видів перетворювальної діяльності, глибокі зміни в структурі психіки.Історія фізики тісно пов’язана з історією суспільства, оскільки фізика, як і будь-яка наука, є важливою складовою культури, а науковий розвиток, безумовно, визначається розвитком цивілізації в цілому. При цьому розвиток фізики значною мірою залежить від рівня останньої і зумовлює розвиток продуктивних сил суспільства. Отже, рівень фізичних знань визначається розвитком як матеріальної культури, так і загальної — духовної — культури. 1.2 Зародження і розвиток фізики як науки Дослідивши ланцюжок розвитку фізики, учені з’ясували, що своїм корінням фізика сягає часів Давньої Греції. Виявляється, саме стародавні греки, спростувавши теорію тотального контролю богів, намагалися пояснити природні явища науковим шляхом.«Фізика» — так назвав першу відому нам наукову працю про природні явища давньогрецький учений Аристотель, який жив у IV ст. до н. е. Цей фундаментальний трактат, що заклав підвалини фізики як науки, складається з восьми книг. Уперше фізика розглядається не як учення про природу, а як наука про рух, категорія якого передбачає час, простір і місце.У своїх фізичних трактатах Аристотель пропонує універсаль-ну схему чотирьох причин, що відіграють важливу роль у фізиці: формальна причина (що це?), матеріальна причина (з чого склада-ється?), рушійна причина (звідки походить?), цільова причина (за-ради чого існує?).Книга Аристотеля служила основним «підручником фізики» впродовж майже двох тисячоліть.Наступний вирішальний крок у розвитку фізики зробив видатний італійський учений Галілео Галілей (1564–1642). Його вважають основоположником фізики в її сучасному розумінні — як дослідної (експериментальної) науки. Галілей дослідним шляхом спростував деякі важливі положення Аристотеля. Фізика досліджує механічні, теплові, електромагнітні, світлові явища, а також будову речовини. Завданням фізики, як і інших наук, є пошук законів, за допомогою яких можна пояснювати та прогнозувати широке коло явищ. 1.3 Роль фізичного знання в житті людини й розвитку суспільства Навчившись прогнозувати фізичні явища й керувати ними, людина стала «велетнем»: вона створила двигуни, у мільйони разів потужніші за людські руки, комп’ютери, які розширили можливості науки, техніки й мистецтва, об’єднала всіх жителів Землі надійними системами зв’язку.Відбулися глибокі, якісні зміни в багатьох галузях науки й техніки, пов’язані з важливими відкриттями в галузі фундаментальної фізики. Відкриття радіоактивності, електромагнітних хвиль, ультразвуку, реактивного руху тощо сприяли тому, що людина, застосовуючи ці знання, просунула розвиток техніки далеко вперед. Людина навчилася передавати на відстань не лише звук, але й зображення. Людина вийшла в космос, висадилася на Місяці, побачила його зворотний бік. За допомогою унікальних оптичних приладів можна дізнатися, з якої речовини складаються далекі планети. Отримані дані коли-небудь дозволять людині зробити нові надзвичайні відкриття, що приведуть до подальших досягнень у науці й техніці. Наука стала безпосередньою продуктивною силою.Однак справа не лише в «практичній» цінності фізики: знання фізики необхідне кожному з нас, щоб задовольнити природну ціка-вість у розумінні навколишнього світу.Фізичні знання і методи народжують нові науки, наприклад, біофізику, геофізику, астрофізику. 2. ЗАРОДЖЕННЯ І РОЗВИТОК ФІЗИКИ ЯК НАУКИ Народи Вавилонії, Єгипту, Ассірії, Індії, Китаю за багато років нагромадили значний запас природничо-наукових і технічних знань. Свідченням цього є величні споруди Вавилона, унікальні єгипетські піраміди, іригаційні системи, різного роду військові колісниці, метальні машини і пристрої. Новий етап у розвитку науки починається з середини І тисячоліття до нашої ери, коли на історичну арену виходить Стародавня Греція. Родоначальником першої грецької філософської школи був Фалес із Мілета (бл. 625—547 до н.е.), якого називали одним із семи мудреців стародавніх часів. Від нього беруть початок наші знання з електрики й магнетизму. Він описав властивості натертого бурштину (янтарю) притягати легкі тіла, а магніту — залізо. Його наступником був Анаксімандр (610—546 до н.е.), який висловив думку про єдність матеріального світу. Геракліт з Ефеса (594—475 до н.е.) стверджував, що все існує і у той же час не існує, бо все тече. Піфагорійці «надали геометрії характеру справжньої науки». Ксено-фан (580—488 до н.е.), Парменід (V ст. до н.е.), Зенон (V ст. до н.е.) стверджували єдність світу, але разом з тим проголосили тезу про незмінність і нерухомість усього існуючого. Проти рухомості особливо відомі висловлювання Зенона. Демокріт (460—370 до н.е.) перший з наївно матеріалістичних позицій пояснив, що всі тіла складаються з найдрібніших матеріальних частинок — атомів, що немає нічого, крім атомів і пустоти. Основна теза Демокріта — вічність і незнищуваність матерії. Епікур (341—270 до н.е.) стверджував, що всі тіла складаються з неподільних, щільних частинок, які розрізняються формою, вагою, величиною. Він також визнавав існування атомів і пустоти, стверджував вічність матерії. Епікур узагальнив усі наукові досягнення свого часу і виклав їх у таких творах, як «Фізика», «Метафізика», «Метеорологія» тощо. Значний внесок у розвиток механікизробив Арістотель. Він не тільки дав означення механіки як науки, а й детально вивчав розбіжності тиску й удару, зробив важливий внесок у розв'язок задачі про важіль, увів поняття про два роди рухів — природні й вимушені, дав класифікацію руху тіл. Архімед (бл. 287—212 до н.е.) у дослідженнях значну увагу приділяв статиці. У XIII ст. з'явився провісник нової експериментальної науки Роджер Бекон (1214—1294), який стверджував, що істинне знання здобувається дослідно; сам багато експериментував, зокрема дізнався про склад пороху, досліджував властивості пари, винайшов способи одержання у чистому виді фосфору, магнію, вісмуту тощо. Микола Кузанський (1401—1464) висловив думку про матеріальну єдність світу. Йому належать відомі досліди з вимірювання часу падіння різних тіл: дерева, каміння, свинцевої кулі тощо. Леонардо да Вінчі (1452—1519) вважав найправильнішим дослідне вивчення природи, стверджуючи, що дослід був учителем тих, хто добре писав, і що мудрість — дочка досліду, бо тільки ґрунтуючись на ньому, можна дістати позитивні результати у дослідженні природи. Міколай Копернік (1473—1543) у своїх працях не лише відкинув систему світу Птолемея, а й запропонував нову, геліоцентричну систему. З цього часу розпочалася наукова революція у природознавстві. Галілео Галілей (1564—1642), досліджуючи падіння різноманітних тіл, відкинув хибне твердження Арістотеля про залежність швидкості падіння тіл від їхньої ваги, доповнив і розвинув далі вчення Арістотеля про рух і розробив основи динаміки. Френсіс Бекон (1561—1626) виклав основний метод пізнання природи — метод індукції. Він приділив велику увагу питанню експерименту як абсолютно необхідній умові при виченні природи. Рене Декарт (1596—1650 ) дав чітке формулювання закону інерції і багато уваги приділив визначенню таких важливих понять, як маса, сила, тиск, удар тощо. Він вперше увів поняття про закон збереження кількості руху і сформулюв його: «...коли одне тіло зіштовхується з іншим, воно не може надати йому ніякого іншого руху крім того, що втрачає під час цього зіштовхування, як не може і відняти у нього більше, ніж одночасно придбати собі». Даниїл Бернуллі (1700—1782) вважається одним із найвидатніших фізиків і математиків свого часу. Так, Паризька академія десять разів присуджувала премії Д. Бернуллі за кращі дослідження з проблем математики і фізики. Л. Ейлер (1707—1783) написав понад 860 праць, які становлять більше ніж 40 тис. друкованих сторінок. У 1736 р. у Петербурзі вийшла книга «Механіка, або наука про рух, викладена аналітично», яка стала важливою віхою у розвитку фізики. Ж. Даламбер (1717—1783) сформулював загальний принцип динаміки системи — так званий принцип Д'Аламбера, за яким рух системи точок відбувається так, що в кожний момент часу втрачені сили й сили (зв'язків) взаємно врівноважуються. Ж. Ла- гранж (1736—1813) остаточно затвердив нові аналітичні методи у механіці і створив аналітичну динаміку системи матеріальних точок. М. В. Ломоносов (1711—1765) уперше розробив основи молекулярно-кінетичної теорії, пояснив природу теплоти, сформулював закон збереження руху і матерії тощо. Д. Фаренгейт (1686—1736) у 1709 р. виготовив спиртові термометри, а в 1714—1715 рр. створив перші ртутні термометри з основними точками 0о і 212о. Р. Реомюр (1683—1757) описав винайдений ним спиртовий термометр, шкала якого між точкою танення льоду (взятої ним за 80о) і точкою кипіння води (0о) була поділена на 80 рівних частин, А. Цельсій (1701—1744) запропонував у 1742 р. термометричну шкалу з основними точками 0о і 100о. Г. Ріхман (1711—1753) виконав важливі експериментальні дослідження з визначення впливу температури, форми і поверхні тіл та швидкості руху охолоджувального середовища на теплообмін, обґрунтував закон охолодження тіла, дослідив процеси випаровування залежно від стану середовища, температури. А. Лавуазьє (1743—1794) і П. Лап-лас (1749—1827) у 1783 р. запропонували калориметричний метод вимірювання теплоємностей тіл і у праці «Мемуари про теплоту» описа- Саді Ка,рно ли сконструйований ними калориметр. Створені в кінці XVII — на початку XVIII ст. (в 1690 р. французьким фізиком Д. Папеном (1647—1714), у 1698 р. англійським інженером Т. Се-вері (1650—1712) і, нарешті, у 1705 р. англійським винахідником Т. Нью-коменом (1663—1729)) вогнедіючі пароатмосферні машини не могли задовольнити потреби суспільства через свою технічну недосконалість. У цих машинах парові двигуни були зроблені у комбінації з водяними колесами, які відігравали роль передавального механізму; вони були надто громіздкі, неекономічні і використовувалися лише для відкачування води з шахт. Першу парову машину універсальної дії, яка забезпечила практичне застосування теплоти для механічних потреб, сконструював видатний російський теплотехнік 1.1. Ползунов (1728—1766). У 1784 р. універсальну парову машину розробив англійський винахідник Д. Уатт (1736—1819), який вперше застосував у ній відцентровий регулятор з дросельною заслінкою для підтримування сталої кількості обертів вала. Універсальна машина Уатта завдяки значній економічності почала широко використовуватися. | |
Просмотров: 4793 | Загрузок: 177 | Рейтинг: 3.0/2 |
Всего комментариев: 0 | |