Приветствую Вас, Гость! Регистрация RSS
Вторник, 17.06.2025


Главная » Файлы » Рефераты » Рефераты

Теорії графів та Алгоритм Деікстра
[ Скачать с сервера (91.9 Kb) ] 11.06.2017, 23:10
1. Вступ
Останнім часом дослідження в областях, що традиційно відносяться до дискретної математики, займають усе більш помітне місце. Поряд з такими класичними розділами математики, як математичний аналіз, диференціальні рівняння, у навчальних планах спеціальності "Прикладна математика" і багатьох інших спеціальностей з'явилися розділи по математичній логіці, алгебрі, комбінаториці і теорії графів. Причини цього неважко зрозуміти, просто розглянувши задачу, розв'язувану пошуку найкоротшого шляху в графі .

2. Елементи теорії графів
Основні визначення
Граф (graph) - пари G=(V,E), де V - безліч об'єктів довільної природи, називаних вершинами (vertices, nodes), а E - сімейство пар ei=(vi1, vi2), vijV, називаних ребрами (edges). У загальному випадку безліч V і/чи сімейство E можуть містити нескінченне число елементів, але ми будемо розглядати тільки кінцеві графи, тобто графи, у яких як V, так і E кінцеві.
У приведеному визначенні графа E не випадково названо сімейством пар, а не безліччю. Справа в тім, що елементи E можуть бути не унікальні, тобто можливі кратні ребра. Існує інше, більш коректне визначення: граф визначається як трійка G=(V,E,), де V - безліч вершин, E - безліч ребер, а =(v,u,e) - тримісний предикат (булевська функція від трьох перемінних), що повертає True тоді і тільки тоді, коли ребро e інцидентне вершинам v і u. Однак такі "строгості" у нашому викладі є надмірними.
Якщо порядок елементів, що входять у ei, має значення, то граф називається орієнтованим (directed graph), скорочено - орграф (digraph), інакше - неорієнтованим (undirected graph). Ребра орграфа називаються дугами (arcs). Надалі будемо вважати, що термін "граф", застосовуваний без уточнень "орієнтований" чи "неорієнтований", позначає неорієнтований граф.
Приклад: G=(V,E); V={1,2,3,4}; E=<(1,1), (1,2), (1,3), (2,4), (2,4)>
G
Якщо e=(v,u), те вершини v і u називаються кінцями ребра. При цьому говорять, що ребро e є суміжним (інцидентним) кожної з вершин v і u. Вершини v і u також називаються суміжними (інцидентними). У загальному випадку, допускаються ребра виду e=(v,v); такі ребра називаються петлями.
Ступінь вершини графа - це число ребер, інцидентних даній вершині, причому петлі враховуються двічі. Оскільки кожне ребро інцидентне двом вершинам, сума ступенів усіх вершин графа дорівнює подвоєній кількості ребер: Sum(deg(vi), i=1..|V|)=2|E|.
Граф, що не містить петель і кратних ребер, називається звичайним, чи простим графом (simple graph). У багатьох публікаціях використовується інша термінологія: під графом розуміється простий граф, граф із кратними ребрами називають мультиграфом, з петлями - псевдографом.
Деякі класи графів одержали особливі найменування. Граф з будь-якою кількістю вершин, не утримуючих ребер, називається порожнім. Звичайний граф з n вершинами, будь-яка пара вершин якого з'єднана ребром, називається повним і позначається Kn (очевидно, що в повному графі n(n-1)/2 ребер).

Граф, вершини якого можна розбити на непересічні підмножини V1 і V2 так, що ніякі дві вершини, що належать тому самому підмножині, не суміжні, називається двочастковим (чи біхроматичним, чи графом Кенига) і позначається Bmn (m=|V1|, n=|V2|, m+n=|V|). Повний двочастковий граф - такий двочастковий граф, що кожна вершина безлічі V1 зв'язана з усіма вершинами безлічі V2, і навпаки; позначення - Kmn. Зауваження: повний двочастковий граф Bmn не є повним (за винятком B11=K2).
B33
Підграфом, чи частиною графа G=(V,E) називається такий граф G'=(V',E'), що V'V і дві несуміжні вершини в G не суміжні в G'. Повним підграфом називається підграф, будь-яка пара вершин якого суміжна.
Основним підграфом (суграфом) графа G називається будь-який його підграф, що містить ту ж безліч вершин, що і G.

Ізоморфізм, гомеоморфізм
Графи G1=(V1,E1) і G2=(V2,E2) називаються ізоморфними (позначення: G1~G2), якщо між графами існує взаємо-однозначне відображення : G1G2 (V1V2, E1E2), що зберігає відповідність між ребрами (дугами) графів, тобто для будь-якого ребра (дуги) e=(v,u) вірно: е'=(v,u)=((v),(u)) (eE1, е'E2). Відображення  називається ізоморфним відображенням.
Іншими словами, ізоморфні графи розрізняються тільки позначенням вершин.

Ізоморфні графи. Одне з ізоморфних відображень: (0,0), (1,3), (2,5), (3,6), (4,7), (5,2), (6,1), (7,4), (8,9), (9,8).
Характеристики графів, інваріантні відносно ізоморфизмов графів (тобто приймаючі однакові значення на ізоморфних графах), називаються інваріантами графів.
Підрозділом ребра (v1,v2) графи називається операція додавання в граф вершини v' і заміни цього ребра на два суміжних ребра (v1,v') і (v',v2): V'=V+{v'}, E'=E-{(v1,v2)}+{(v1,v')}+{(v',v2).
Граф G' називається підрозділом графа G, якщо він може бути отриманий з G шляхом кінцевого числа підрозділів ребер.
Дві графи називаються гомеоморфними, якщо для них існують ізоморфні підрозділи.

Шляхи і цикли
Шляхом у графі (чи маршрутом в орграфі) називається послідовність вершин, що чергується, і ребер (чи дуг - в орграфі) виду v0, (v0,v1), v1, ... , (vn-1,vn), vn. Число n називається довжиною шляху. Шлях без повторюваних ребер називається ланцюгом, без повторюваних вершин - простим ланцюгом. Шлях може бути замкнутим (v0=vn). Замкнутий шлях без повторюваних ребер називається циклом (чи контуром в орграфі); без повторюваних вершин (крім першої й останньої) - простим циклом.
Твердження 1. Якщо в графі існує шлях, що веде з вершини v0 у vn, то існує і простий ланцюг між цими вершинами.
Доказ: такий простий ланцюг можна побудувати, "викинувши" зі шляху всі цикли.
~
Граф називається зв'язковим, якщо існує шлях між будь-якими двома його вершинами, і незв'язним - у противному випадку. Незв'язний граф складається з декількох зв'язних компонентів (зв'язкових підграфов).
Для орграфів поняття св'язаність є більш складним: розрізняють сильну св'язаність, однобічну звязність і слабку зв’язність. Орграф називається сильно зв'язковим, якщо для будь-яких двох його вершин v і u існує як маршрут з v у u (v->u), так і з u у v (u->v). Орграф називається односторонньо зв'язковим, якщо для будь-яких двох його вершин u і v існує по крайньої один з маршрутів v->u чи u->v. Нарешті, орграф називається слабко зв'язковим, якщо зв'язний неорієнтований граф, одержуваний з цього орграфа шляхом зняття орієнтації з дуг. Очевидно, що будь-який сильно зв'язний граф є односторонньо зв'язковим, а односторонньо зв'язний - слабко зв'язковим, але не навпаки.

Дерева
Деревом називається довільний зв'язний граф без циклів.
Лема 1. Нехай G=(V,E) - зв'язний граф, вершини v1 і v2 якого не суміжні. Тоді в графі G'=(V,E+(v1,v2)) існує простий цикл, що проходить через ребро (v1,v2).
Доказ: тому що G - зв'язний, у ньому існує шлях з v2 і v1, а значить (по утвержденю 1),і простий ланцюг v2...v1. Отже, у графі G' існує шлях v2...v1(v1,v2)v2, що є простим циклом (по визначенню).
~
Лема 2. Нехай G=(V,E) - зв'язний граф, ребро e=(v1,v2) якого входить у деякий цикл. Тоді граф G'=(V,E-e) - також зв'язний, тобто при видаленні кільцевого ребра (ребра, що входить у деякий цикл) зі зв'язного графа цей граф залишається зв'язковим.
Доказ: тому що G - зв'язний, у ньому існує шлях S між будь-якими двома вершинами vi і vj. Якщо e не входить у шлях S=vi...vj, то цей шлях існує й у графі G', а виходить, G' залишається зв'язковим. Інакше (e входить у цей шлях): S=vi...v1(v1,v2)v2...vj. За умовою e - входить у деякий цикл, отже, існує замкнутий шлях C=v2(v2,v1)v1Tv2 (початком замкнутого шляху ми можемо вважати будь-яку його вершину), причому ребро e=(v1,v2) не входить у T (якщо існує шлях між вершинами, то існує і шлях, що є простим ланцюгом - див. утвердження 1). Але тоді існує шлях S'=vi...v1Tv2...vj, у котрій не входить ребро e=(v1,v2) і, отже, цей шлях існує в графі G'.
~
Лема 3. Нехай G=(V,E), p=|V|, q=|E|.
1) число зв'язних компонентів у G більше або дорівнює |V|-|E| (Nкомп.p-q);
2) якщо в G немає циклів, то число зв'язних компонентів у G дорівнює |V|-|E| (Nкомп.=p-q).
Доказ: побудуємо порожній граф з p вершинами (очевидно, у ньому рівно p зв'язкових компонент) і будемо додавати ребра по одному.
При додаванні ребра можливі дві ситуації: (а) нове ребро з'єднує вершини, що знаходилися до цього в різних компонентах (у цьому випадку кількість компонент зменшується на одиницю) і (б) нове ребро з'єднує вершини, що належать одному компоненту (число компонентів не змінюється). Отже, при додаванні q ребер число компонент зменшиться не більше ніж на q, і, отже, кількість компонентів у графі буде більше або дорівнює p-q. Це доводить твердження (1).
Відповідно до леми 1, при додаванні ребра в зв'язний граф у ньому з'являється цикл. Якщо в графі немає циклів, це означає, що при додаванні ребер завжди відбувався варіант (а) - інакше з'явилися б цикли. Отже, число компонентів при кожнім додаванні ребра зменшувалося на одиницю, і після додавання q ребер у графі буде рівно p-q компонент. Це доводить твердження (2).
~
Наслідок 1 леми 3: якщо |E||V|-2, те граф G=(V,E) незв'язний (випливає безпосередньо з лемі 3).
Теорема 1. Любою зв'язний граф містить підграф, що є деревом.
Доказ: якщо в зв'язному графі немає циклів, то він уже є деревом по визначенню. Інакше знаходимо будь-як кільцеве ребро і видаляємо його; відповідно до лемми 2 граф залишається зв'язковим. Продовжуємо процес, поки в графі існують цикли. У силу кінцівки графа цей алгоритм побудує дерево за кінцеве число кроків.
Зауваження: фактично доведене більш сильне твердження - що будь-який зв'язний граф містить основній підграф (підграф з тією же кількістю вершин, що і сам граф), що є деревом.
~
Теорема 2. Для будь-якого дерева G=(V,E) вірно: |V|-|E|=1.
Доказ: по визначенню, у дереві немає циклів, отже, відповідно до леми 3 у ньому рівно |V|-|E| зв'язкових компонент. Але по визначенню дерево зв'язне, тобто складається з одного зв'язного компонента, тому |V|-|E|=1.
~
Теорема 3. Наступні властивості графів еквівалентні:
G=(V,E) - дерево;
будь-які дві вершини G з'єднані єдиним простим ланцюгом;
G - граф без циклів, у якого |E|=|V|-1;
G - зв'язний граф, у якого |E|=|V|-1;
G - зв'язний граф, але при видаленні будь-якого ребра він стає незв'язним;
G - граф без циклів, але при додаванні будь-якого ребра в ньому з'являється рівно один (з точністю до завдання початкової вершини і напрямку обходу) простий цикл.
Доказ: доведемо теорему в послідовності (1)<=>(2), (2)=>(3)=>(4)=>(5)=>(6)=>(1).
(1)=>(2): допустимо, що деякі дві вершини v1 і v2 графа G з'єднані, принаймні, двома різними простими ланцюгами L1=u1....uk, де u1=v1 і uk=v2, і L2=w1....wm, де w1=v1 і wm=v2. З того, що ланцюги є простими і різними, випливає, що існує число j, 1<j<min(k,m), таке, що uj-1wj-1, ujwj, ... , uj+a-1wj+b-1, uj+awj+b, де a1, b1. Отже, у G існує цикл ІЗ=uj-1(uj-1,uj)uj...uj+a(wj+b,wj+b-1)wj+b-1... wj(wj,wj-1)wj-1 (див. малюнок) - одержали протиріччя з (1).

(2)=>(1):
(а) граф G є зв'язковим по визначенню связаність (будь-які дві вершини графа з'єднані ланцюгом);
(б) допустимо, що в графі G існує цикл, що проходить через деяку вершину v: C=v(v,u1)u1....uk(uk,v)v. Але це означає, що між v і кожної з вершин ui існують, принаймні, два різних шляхи L1=v(v,u1)u1...ui-1(ui-1,ui)ui і L2=v(v,uk)uk...ui+1(ui+1,ui)ui (шляхи різні, тому що по визначенню в циклі відсутні повторювані ребра). У силу утвердження 1 з цих шляхів можна "виділити" прості ланцюги, що також будуть різні (у L1і L2 немає співпадаючих ребер), - одержали протиріччя з (2).
З (а), (б) і визначення дерева випливає, що G є деревом. (2)=>(3): по теорема 2;
(3)=>(4): по лемма 3;
(4)=>(5): т.к. |E|=|V|-1, те після видалення ребра в новому графі буде |V|-2 ребер, і по слідству 1 лемки 3 цей граф буде незв'язним;
(5)=>(6):
(a) доведемо першу частину твердження (G - граф без циклів): допустимо, у G є цикли; але тоді при видаленні будь-якого кільцевого ребра він залишиться зв'язковим, що суперечить (4);
(б) доведемо другу частину твердження (при додаванні будь-якого ребра в G з'являється рівно один простий цикл): зі связаність графа і лемма 1 випливає, що при додаванні будь-якого ребра в G з'являється, як мінімум, один простий цикл; у силу (2) цей простий цикл єдиний (зворотне означало б, що в G існують вершини, з'єднані більш ніж одним простим ланцюгом);
(6)=>(1): допустимо, G - не дерево, тобто граф чи не зв'язний містить цикли. Циклів не може бути в силу (5а), тому залишається варіант: G - незв'язний і складається мінімум із двох компонентів. Але тоді при додаванні ребра між вершинами, що належать різним компонентам, цикли не утворяться, а це суперечить (5б).
~
Основним деревом (кістяком) зв'язного графа називається будь-який його основний підграф, що є деревом.
Існування основного підграфа для будь-якого зв'язного графа доводиться теоремою 1.
Загальне число основних дерев зв'язного графа може бути дуже велика. Так, для повного графа з n вершинами воно дорівнює nn-2 (без доказу).

Граф і два його основних дерева (вилучені ребра показані пунктиром).
Для довільного (можливо, незв'язного) графа G основне дерево визначається як будь-який його основний підграф, не утримуючих циклів і маючи стільки ж компонентів связаність, що і G.
Цикломатичне число і фундаментальні цикли
Цикломатичрим числом графа G=(V,E) називається з k зв'язковими компонентами називається число (G)=|E|-|V|+k.
Фундаментальним циклом графа G=(V,E) з основним деревом T=(V,E') називається простий цикл, одержуваний у результаті додавання в T одного з ребер G, не приналежного E'.
Твердження 1. Кількість фундаментальних циклів графа G=(V,E) при будь-якому фіксованому основним дереві T=(V,E') дорівнює цикломатичному числу G.
Доказ: відповідно до лемма 3 п.2, k=|V|-|E'|, отже, <кількість ребер G, не приналежних E'> = |E|-|E'| = |E|-(|V|-k) = (G). При додаванні кожного з цих ребер у T з'являється рівно один простий цикл у силу теоремі 3 п.6; всі одержувані при цьому прості цикли різні, тому що кожний з них містить принаймні одне унікальне ребро - те саме ребро G, не приналежне E', що було додано в дерево.
~
Компланарні графи
Зіставивши вершинам графа крапки на чи площині в просторі, а ребрам - лінії, що з'єднують крапки, що відповідають кінцям ребра, можна одержати діаграму - візуальне представлення даного графа.
Очевидно, що для будь-якого графа можна побудувати нескінченну кількість таких діаграм. Якщо на деякій діаграмі серед крапок, що відповідають вершинам графа, немає співпадаючих, а лінії, що відповідають ребрам графа, не мають загальних крапок (за винятком кінців), то ця діаграма називається геометричною реалізацією графа.
Теорема 1. Для будь-якого графа існує геометрична реалізація в тривимірному евклідовому просторі.
Доказ:
реалізуємо |V| крапок, що відповідають вершинам графа, на одній прямій;
проведемо через цю пряму |E| різних на півплощин;
реалізуємо кожне ребро у своїй на півплощині.
~
Виникає питання: чи будь-який граф можна реалізувати на площині? Відповідь - негативний. Геометричну реалізацію на площині допускають лише деякі графи; такі графи називаються компланарними.
Для наступного викладу нам знадобиться поняття грані. Неформально визначимо грань як частина площини, на які площина "розрізається" лініями геометричної реалізації графа. Завжди існує необмежена зовнішня грань.
- 7 вершин, 8 ребер, 3 грані
Формула Ейлера. Для будь-якої геометричної реалізації графа G=(V,E) на площині вірно: p-q+r=2, де p=|V|, q=|E|, r - число граней (без доказу).
Теорема 2. Якщо в зв'язковому планарним графі немає циклів довжини менше k і k3, то qk(p-2)/(k-2), де p=|V|, q=|E|.
Доказ (не зовсім формальне): нехай граф реалізований на площині і при цьому вийшло r граней. Нехай qi - число сторін у i-й грані (див. малюнок). Кожне ребро є стороною двох граней, тому 2q=Sum(qi, i=1..r). По умови в графі немає циклів довжини менше k, але тоді qik (тому що сторони грані утворять цикл) і 2q=Sum(qi, i=1..r)kr. По формулі Эйлера r=2-p+q, отже, 2qk(2-p+q), з чого випливає доказувана нерівність.

- 8 ребер, 3 грані, 3+6+7=16 сторін
~
Наслідок 1 теореми 2: для будь-якого зв'язкового пленарного графа без петель і кратних ребер виконується нерівність: q3(p-2), де p=|V|, q=|E|.
Доказ: тому що за умовою в графі немає петель і кратних ребер, у ньому немає і циклів довжини менше 3, тому, підставляючи k=3 у нерівність теоремі 2, одержуємо: qk(p-2)/(k-2)=3(p-2).
~
Теорема 3. Граф K5 не компланарний.
Доказ: K5 зв'язний, у ньому немає петель і кратних ребер, але наслідок 1 теореми 2 не виконується - q=10>3(p-2)=9. Виходить, K5 не компланарний.
~
Теорема 4. Граф K33 не компланарний.
Зауваження: використання наслідку 1 теореми 2 тут не допоможе, тому що q=9<3(p-2)=12.
Доказ: у K33 немає циклів довжини менше 4, тому застосуємо нерівність теоремі 2 безпосередньо (при k=4): q=9>4(p-2)/2=8. Отже, K33 не компланарний.
~
Теорема Понтрягіна-Куратовского (критерій компланарності графів). Граф G планарин тоді і тільки тоді, коли він не містить підграфов, гомеоморфних K5 чи K33.
Доказ: необхідність випливає з тверджень 1-4 (див. нижче), а також з того факту, що графи K5 і K33 не компланарні (відповідно до теорем 3 і 4).
Твердження 1: якщо графи U1 і U2 ізоморфні, то U1 компланарний тоді і тільки тоді, коли U2 компланарний.
Доказ: будь-яка геометрична реалізація U1 є геометричною реалізацією U2, і навпаки.
Твердження 2: будь-який підрозділ U' графа U компланарний тоді і тільки тоді, коли U компланарний.
Доказ:
(=>) граф U' компланарний, отже, існує його геометрична реалізація на площині R'. Побудуємо по R' плоску геометричну реалізацію R графа U. Для цього об'єднаємо всі лінії R', що відповідають ребрам U', отриманим у результаті виконання операцій підрозділу ребер. У силу існування R граф U є компланарним.
<=) граф U компланарний, отже, існує його геометрична реалізація на площині R. Побудуємо по R плоску геометричну реалізацію R' графа U'. Для цього повторимо в будь-якій послідовності операції підрозділу ребер, що привели до побудови U'. Після виконання кожної з цих операцій будемо розбивати лінію, що відповідає ребру, що підрозділяється, на двох ліній (розбивка можна робити в будь-якій крапці, що не збігається з кінцями лінії). У силу існування R' граф U' є компланарним.

Твердження 3: якщо графи U1 і U2 гомеоморфні, те U1 компланарний тоді і тільки тоді, коли U2 компланарний.
Доказ:
(=>) за умовою U1 і U2 гомеоморфні  {по визначенню}  існують їхні ізоморфні підрозділи U1' і U2'. За умовою граф U1 компланарний  {по утв.2}  граф U1' компланарний  {по утв.1}  ізоморфний йому граф U2' компланарний  {по утв.2}  граф U2 компланарний.
(<=) аналогічно.
Твердження 4: якщо підграф U' графа U не компланарний, те U також не компланарний.
Доказ: допустимо, що граф U компланарний. Отже, існує його плоска геометрична реалізація R. Але тоді можна побудувати плоску геометричну реалізацію R' графа U': для цього досить видалити з R крапки і лінії, що відповідають тим вершинам і ребрам U, яких немає в U'. З існування R' випливає, що U' компланарний - одержали протиріччя.
Достатність теореми доводиться набагато складніше (див., наприклад, [3]).
~
Існують і інші критерії компланарності графів [3].

Розфарбування графів
Верховим розфарбуванням (далі - просто розфарбуванням) графа називається відображення безлічі вершин графа на кінцеву безліч (безліч квітів); n-розфарбування графа - розфарбування з використанням n квітів. Розфарбування називається правильної, якщо ніякі дві вершини одного кольору не суміжні. Очевидно, що для графа без петель завжди існує правильне розфарбування в |V| квітів.

Хроматичним числом графа G називається мінімальне число n=(G), таке, що існує правильне n-розфарбування.
Лема 1. У будь-якому компланарному графі без петель і кратних ребер існує вершина ступеня не більш п'яти.
Доказ: допустимо, що ступеня усіх вершин перевершують 5. Тоді 2q=Sum(deg(vi), i=1..|V|)p і q3p. Але по слідству 1 теореми 2 повинне виконуватися нерівність q3(p-2)<3p - одержали протиріччя.
~
Теорема про п'ять фарб. Кожен компланарний граф без петель і кратних ребер є не більш ніж 5-хроматичним.
Доказ: (індукцією по числу вершин).
При p=1 твердження теореми вірно. Допустимо, що (*) твердження вірне для всіх p<p0. Доведемо, що тоді воно вірно і для p0.
Розглянемо компланарний граф G без петель і кратних ребер з p0 вершинами; по лемі 1 у ньому є вершина v0 ступеня не більш 5. По припущенню індукції (*) граф G', одержуваний видаленням з G вершини v0 (очевидно, також компланарний), може бути розфарбований не більш, ніж у 5 квітів. Нехай (**) v1...vk, k=deg(v0) - усі вершини-сусіди вершини v0, розташовані по годинній стрілці відносно v0. Якщо в розфарбуванні вершин v1...vk використовується не більш 4-х квітів, то "пофарбуємо" вершину v0 у що залишився 5-й колір і одержимо правильне розфарбування.
Залишилося розглянути випадок, коли в розфарбуванні вершин v1...vk у графі G' використовується 5 квітів (k=5). Нехай ci - колір вершини vi (i=1..5). Розглянемо безліч A, що складається з вершини v1 і усіх вершин графа G, крім v0, у котрі можна дійти з v1 тільки по вершинах квітів c1 і c3. Можливі два випадки:
Категория: Рефераты | Добавил: opteuropa | Теги: Теорії графів та Алгоритм Деікстра, ІТ, менеджмент і економіка., скачати реферат з комп'ютерних наук, скачать реферат
Просмотров: 673 | Загрузок: 18 | Рейтинг: 0.0/0
Всего комментариев: 0
Имя *:
Email *:
Код *:
Украина онлайн

Рейтинг@Mail.ru

подать объявление бесплатно